Search results for " Excitotoxicity"

showing 6 items of 6 documents

Fructose-1,6-Bisphosphate Protects Hippocampal Rat Slices from NMDA Excitotoxicity

2019

Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 &mu

Fructose 16-bisphosphateExcitotoxicityFructose-bisphosphate aldolaseorganotypic hippocampal brainslice culturesmedicine.disease_causeHippocampuslcsh:Chemistrychemistry.chemical_compoundenergymetabolismFructose-Bisphosphate Aldolaseenergy metabolismfructose-16-bisphosphatelcsh:QH301-705.5Spectroscopy<i>N</i>-methyl-<span style="font-variant: small-caps">d</span>-aspartatebiologyChemistryorganotypic hippocampal brain slice culturesGlyceraldehyde-3-Phosphate DehydrogenasesGeneral MedicineComputer Science ApplicationsFructose-BisphosphataseNeuroprotective AgentsNMDA receptorexcitotoxicityPhosphofructokinaseN-methyl-d-aspartatemedicine.medical_specialtyN-MethylaspartateFructose 16-bisphosphataseCatalysisArticleInorganic ChemistryNecrosisInternal medicinemitochondrial dysfunctionmedicineAnimalsPhysical and Theoretical ChemistryRats WistarMolecular BiologySettore BIO/10 - BIOCHIMICAOrganic ChemistryAldolase AMetabolismPurine NucleosidesRatsEndocrinologylcsh:Biology (General)lcsh:QD1-999Phosphofructokinases6-bisphosphatebiology.proteinfructose-1; 6-bisphosphate; N-methyl-d-aspartate; excitotoxicity; energymetabolism; mitochondrial dysfunction; organotypic hippocampal brainslice culturesfructose-1
researchProduct

Neurochemical correlates of brain atrophy in fibromyalgia syndrome: a magnetic resonance spectroscopy and cortical thickness study

2020

(1) Background: Recently, a series of clinical neuroimaging studies on fibromyalgia (FM) have shown a reduction in cortical volume and abnormally high glutamate (Glu) and glutamate + glutamine (Glx) levels in regions associated with pain modulation. However, it remains unclear whether the volumetric decreases and increased Glu levels in FM are related each other. We hypothesized that higher Glu levels are related to decreases in cortical thickness (CT) and volume in FM patients. (2) Methods: Twelve females with FM and 12 matched healthy controls participated in a session of combined 3.0 Tesla structural magnetic resonance imaging (MRI) and single-voxel MR spectroscopy focused on the thalami…

In vivo magnetic resonance spectroscopymedicine.medical_specialtybrain MRIArticlelcsh:RC321-57103 medical and health sciences0302 clinical medicineNeurochemicalAtrophyNeuroimagingGyrusFibromyalgiaInternal medicinemedicinecortical thicknelcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biology0303 health sciencesbusiness.industryGeneral NeuroscienceMR spectroscopyGlutamate receptorSettore MED/37 - Neuroradiologiacortical thicknessmedicine.diseaseSubcortical gray matterEndocrinologymedicine.anatomical_structurefibromyalgia; glutamate excitotoxicity; cortical thickness; brain MRI; chronic pain; MR spectroscopyMR spectroscopy; brain MRI; chronic pain; cortical thickness; fibromyalgia; glutamate excitotoxicity.fibromyalgiaSettore MED/36 - Diagnostica Per Immagini E Radioterapiabusinesschronic pain030217 neurology & neurosurgeryglutamate excitotoxicity
researchProduct

Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity.

2012

The functional significance of adult neural stem and progenitor cells in hippocampal-dependent learning and memory has been well documented. Although adult neural stem and progenitor cells in the subventricular zone are known to migrate to, maintain and reorganize the olfactory bulb, it is less clear whether they are functionally required for other processes. Using a conditional transgenic mouse model, selective ablation of adult neural stem and progenitor cells in the subventricular zone induced a dramatic increase in morbidity and mortality of central nervous system disorders characterized by excitotoxicity-induced cell death accompanied by reactive inflammation, such as 4-aminopyridine-i…

LipopolysaccharidesPolyunsaturated AlkamidesSubventricular zoneGlutamic AcidMice TransgenicArachidonic AcidsBiologyAmidohydrolasesGlutamatergicMiceNeural Stem CellsLateral VentriclesmedicineAnimalsDronabinolProgenitor cell4-Aminopyridineneurogenesis; ischaemia; neural stem cells; excitotoxicity; endocannabinoidsGanciclovirEpilepsyStem CellsNeurogenesisExcitatory Postsynaptic PotentialsNeural stem cellCorpus StriatumNeuroepithelial cellMice Inbred C57BLStrokeneurogenesisDisease Models Animalmedicine.anatomical_structureNeuroprotective AgentsBenzamidesSettore MED/26 - NeurologiaNeurology (clinical)ischaemiaCarbamatesStem cellNeuroscienceexcitotoxicityExcitatory Amino Acid AntagonistsAdult stem cellEndocannabinoidsBrain : a journal of neurology
researchProduct

Bruce/apollon promotes hippocampal neuron survival and is downregulated by kainic acid

2005

Prolonged or excess stimulation of excitatory amino acid receptors leads to seizures and the induction of excitotoxic nerve cell injury. Kainic acid acting on glutamate receptors produces degeneration of vulnerable neurons in parts of the hippocampus and amygdala, but the exact mechanisms are not fully understood. We have here investigated whether the anti-apoptotic protein Bruce is involved in kainic acid-induced neurodegeneration. In the rat hippocampus and cortex, Bruce was exclusively expressed by neurons. The levels of Bruce were rapidly downregulated by kainic acid in hippocampal neurons as shown both in vivo and in cell culture. Caspase-3 was activated in neurons exhibiting low level…

MaleKainic acidCell SurvivalBiophysicsExcitotoxicityBruce/apollon Hippocampus Kainic acid Excitotoxicity Neuronal death Caspase-3 Cytochrome cDown-RegulationHippocampusStimulationBiologyHippocampal formationmedicine.disease_causeHippocampusBiochemistrychemistry.chemical_compoundDownregulation and upregulationmedicineAnimalsRats WistarMolecular BiologyCells CulturedNeuronsKainic AcidDose-Response Relationship DrugNeurodegenerationGlutamate receptorCell Biologymedicine.diseaseRatsCell biologynervous systemchemistryBiochemistryUbiquitin-Conjugating Enzymeshuman activitiescirculatory and respiratory physiology
researchProduct

Excitotoxin-induced changes in transglutaminase during differentiation of cerebellar granule cells

2002

Excitotoxicity induced by NMDA receptor stimulation is able to increase the activity of many enzymes involved in neuronal cell death. Primary cultures of rat cerebellar granule cells were used to elucidate the role of transglutaminase reaction in the excitotoxic cell response, and to evaluate the role of glutamate receptors in cell survival and degeneration. Granule neurons, maintained in vitro for two weeks, were exposed to NMDA at different stages of differentiation. Following NMDA receptor activation, increases in transglutaminase activity were observed in cell cultures. The levels of enzyme activity were higher in cells at 5 days in vitro than in those at 8-9 or 13-14 days in vitro. Mor…

Programmed cell deathN-MethylaspartateTime FactorsCell SurvivalTissue transglutaminaseNeurotoxinsClinical BiochemistryExcitotoxicityStimulationmedicine.disease_causeReceptors N-Methyl-D-AspartateBiochemistryCerebellummedicineAnimalsRats WistarNeuronsTransglutaminasesbiologyOrganic ChemistryGlutamate receptorCell DifferentiationIn vitroRatsCell biologyAnimals Newbornnervous systemApoptosisNerve Degenerationbiology.proteinNMDA receptorTransglutaminase – Excitotoxicity – Neurodegenerative diseases – Apoptosis – Glutamate – Cerebellar granule neuronsAmino Acids
researchProduct

A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics

2011

Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1enu/+mice show a slow progressive loss of RGCs, activation …

Retinal Ganglion CellsCancer ResearchReceptor expressionExcitotoxicityApoptosisNeurodegenerativeMitochondrionEyemedicine.disease_causeGTP PhosphohydrolasesMice0302 clinical medicineReceptorsoxidative stressPhosphorylationbcl-2-Associated X Protein0303 health sciencesbiologyGlutamate receptorMitochondriaUp-RegulationCell biologymitochondrial fusionAutosomal DominantOriginal Articlebcl-Associated Death ProteinMitochondrial fissionN-Methyl-D-AspartateBiotechnologymitochondrial fragmentationOncology and CarcinogenesisImmunologybcl-X ProteinSOD2Glutamic AcidReceptors N-Methyl-D-AspartateNMDA receptorsCell Line03 medical and health sciencesCellular and Molecular NeuroscienceBcl-2-associated X proteinOptic Atrophy Autosomal DominantmedicineAnimalsEye Disease and Disorders of Vision030304 developmental biologySuperoxide DismutaseNeurosciencesCell BiologyMolecular biologyeye diseasesOxidative StressOptic AtrophyMutationbiology.proteinOPA1 mutationBiochemistry and Cell Biologysense organsglutamate excitotoxicity030217 neurology & neurosurgeryCell Death &amp; Disease
researchProduct